Wednesday, May 20, 2015

Research on Theory and Analytical Tools for Power Networks with High Levels of Renewable Generation

May 19, 2015

Division of Electrical, Communications and Cyber Systems (ECCS) of the National Science Foundation (NSF) announces its interest in receiving EArly-Concept Grants for Exploratory Research (EAGER) proposals to support research efforts in developing fundamental theory and analytical methodologies for power networks with high penetration of renewables.

Existing theoretical foundations for electric power networks were developed for traditional infrastructure in which electricity generation is relegated to large utilities that supply power based on accurate forecasts of demand. In the traditional framework, consumers use power and are charged by the utility for their consumption. With the rise of distributed generation (DG), some of which consists of renewable sources such as electric power generated using solar or wind resources, consumers can now also act as producers (hence the new name prosumers), and can sell excess power into the grid.

In classical power network models, the interaction of synchronous generators with the transmission grid and with system loads could be modeled reasonably well, and theory was developed for system stability, dynamic performance, control, reliability, state estimation, economic dispatch, and so on. For example, the theory of power system stability for traditional power networks includes general theorems on local and regional stability, and Lyapunov functions for systems including various types of loads (impedance, constant power). With the steadily increasing presence of nontraditional energy sources in the electric grid, especially renewable sources such as wind and solar, the classical modeling framework and associated analytical methodologies can no longer capture the system dynamics or provide reliable tools for planning, operations and control. Indeed, renewable generation sources may lack the inertia that is inherent in synchronous generators and may require introduction of power electronic controls that significantly change the nature of the network. They also present the planner and system operator with randomness that was not present in classical power generation. Field experience with large-scale deployment of renewable generation has required retrofits after deployment and sometimes policy changes due to unexpected negative impact on stability and power quality.

The purpose is to invite EAGER proposals for research to develop models and new theory for the emerging power grid with high levels of distributed generation from renewable sources.

No comments:

Post a Comment